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Abstract. In atmospheric time series analysis, where only
one record is typically available, subsampling (which works
under the weakest assumptions among resampling methods),
is especially useful. In particular, it yields large-sample con-
fidence intervals ofasymptoticallycorrect coverage prob-
ability. Atmospheric records, however, are often not long
enough, causing a substandard coverage of subsampling con-
fidence intervals. In the paper, the subsampling methodology
is extended to become more applicable in such practically
important cases.

1 Introduction

Observed and modeled data are often collected in the form
of time series, but there are several predicaments for employ-
ing traditional time series analysis in atmospheric sciences.
The primary challenges are: (a) the records are frequently
prohibitively short, while just a few records (typically one)
are available, and (b) conventional statistical methods are
“based on certain probabilistic assumptions about the nature
of the physical process that generates the time series of inter-
est. Such mathematical assumptions are rarely, if ever, met
in practice” (Ghil et al., 2002). One common assumption is
that observations are normally distributed. Yet in reality dis-
tributions are often not normal, such as those for the velocity
field in a turbulent flow (e.g.,Lesieur, 2008), and new ad-
vances in statistics have made it clear that even slight de-
partures from normality can be a source of concern (e.g.,
Wilcox, 2003). Another questionable assumption is that of

linear models for the observed time series, such as autore-
gressive moving average (ARMA) models, whereas the real
data-generating mechanism (DGM) is inherently nonlinear,
so that estimation commonly based on fitted linear models
may be misleading (e.g.,Gluhovsky and Agee, 2007).

These issues will be addressed below by considering a
problem central to obtaining reliable statistical inference
from limited data sets, namely, the construction of confidence
intervals (CIs) for a parameter,θ , of the unknown distribution
of a stationary time series from its finite record,X1, ...,Xn.

As a typical example, consider a record in Fig.1 from
Gluhovsky(2011) of the vertical velocity of wind in a con-
vective boundary layer during an outbreak of a polar air
mass over the Great Lakes region. The record consists of
8192 data points over about 29 km across Lake Michigan,
50 m above the lake, and it has passed a test for stationarity
from Gluhovsky and Agee(1994). The sample mean, vari-
ance, skewness, and kurtosis of the vertical velocity com-
puted from this record are−0.04, 1.06, 0.83, and 4.10, re-
spectively. The elevated skewness and kurtosis (the corre-
sponding population parameters characterizing a linear time
series are 0 and 3) may indicate nonlinearities in the under-
lying data-generating mechanism (DGM), but these sample
characteristics are just point estimates (our “best guesses”)
of the true values of the parameters. Therefore, to learn how
far one can trust these numbers, CIs are employed.

Here is the problem with CIs for parameters of atmo-
spheric time series, which are produced by the inherently
nonlinear system. A 90 % CI is the range of numbers that
traps the unknown parameter with probability 0.90 called the
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vide a bridge between the Lorenz model and the original gov-
erning equations, whose fundamental properties they inherit,
thus presenting a viable alternative to standard time series
models when these are ill-suited for the atmospheric data.
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Fig. 1. Record of 20-Hz aircraft vertical velocity measurements
over Lake Michigan. Figure from Gluhovsky (2011).
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Fig. 2. Actual coverage probabilities of 90% subsampling CIs with
β=0.50 (black)) andβ=0.42 (red)) for the skewness of nonlinear
time series (4) ata=0.145 andn=2048. Horizontal green lines
denote 0.85 and 0.89 levels.

Table 1. Parameters of the model time seriesXt (Eq. (4)) distribu-
tion vs sample characteristics of the observed seriesWt in Fig.1.

Xt Xt ata=0.145 Wt

Mean M =0 0 −0.04

Variance V =1+2a2
≈ 1.04 1.06

Skewness S=
6a+8a

3

V 3/2 ≈ 0.84 0.83

Kurtosis K =
3+60a
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+60a

4

V 2 ≈ 3.95 4.10

Fig. 1.Record of 20-Hz aircraft vertical velocity measurements over
Lake Michigan. Figure fromGluhovsky(2011).

coverage probability. Also referred to as thenominalor tar-
get coverage probability (e.g.,Davison and Hinkley, 1997),
it is attained only if the assumptions underlying the method
for the CI construction are met. Since for atmospheric time
series this is rarely the case, theactualcoverage probability
may differ from the target level (sometimes considerably).
For example, when the DGM is linear, CIs for the mean or
the variance of the time series may be found analytically,
but the common practice of computing CIs from fitted lin-
ear models may result in erroneous CIs when the real DGM
is, in fact, nonlinear (Gluhovsky and Agee, 2007). Moreover,
CIs for the skewness cannot be based on linear models that
imply zero skewness. Unlike standard methods of time se-
ries analysis, resampling techniques provide asymptotically
valid statistical inference from a single record without mak-
ing questionable/unverifyable assumptions about the DGM.
Among these methods, subsampling (Politis and Romano,
1994; Politis et al., 1999) works under the weakest assump-
tions, which makes it particularly applicable for atmospheric
data.

When the DGM (the model) is known, CIs can be con-
structed using Monte Carlo (MC) simulations: one generates
many records,X1, ...,Xn, from the model, computes from
each record a point estimate,θ̂ , of parameterθ (skewness,
for example), and an estimate,Q̂0.90, of the 0.90 quantile of
the distribution of|θ−θ̂ | (i.e., about 90 % of|θ−θ̂ | values are
below Q̂0.90, and about 10 % are above). Then asymmetric
90 % CI forθ is simply

(θ̂ − Q̂0.90, θ̂ + Q̂0.90). (1)

Such exercise motivates the construction of subsampling CIs
below. Similarly, by estimatingq0.05 andq0.95, the 0.05 and
0.95 quantiles of the distribution of̂θ − θ , one obtains an
equal-tailed90 % CI forθ as(θ̂ − q̂0.95, θ̂ − q̂0.05).

In real-life situations with unknown DGM and a single
record available,X1, ...,Xn, subsampling comes to the res-
cue by replacing independent, computer-generated MC re-
alizations bysubsamples, or blocks of consecutive observa-
tions from the record,

X1, ...,Xb︸ ︷︷ ︸
b

, ..., Xi, ...,Xi+b−1︸ ︷︷ ︸
b

, ..., Xn−b+1, ...,Xn︸ ︷︷ ︸
b

, (2)

which retain the dependence structure of the time series
(Politis et al., 1999). Underscored above are the first, inter-
mediate, and the last block, all of the same lengthb (theblock
size) in the record containingn observations and, therefore,
n−b+1 blocks. Using quantiles estimated from subsamples
in place of independent MC records, the subsampling method
yields large-sample CIs of asymptotically correct coverage,
when

b → ∞ and b/n → 0 as n → ∞, (3)

assuming the existence of a nondegenerate asymptotic distri-
bution for τn(Tn − θ) at someknownrateτn (Politis et al.,
1999). Typically, τn = nβ , β ∈ (0,1], andβ = 0.5 when es-
timatorTn is the sample mean, sample variance, etc.

Very often, however, real records (like that in Fig.1) are
not long enough to satisfy asymptotic conditions (3), which
causes two problems for practical applications. First, the ac-
tual coverage probability of subsampling CIs greatly depends
on the choice of block sizeb, being unacceptable beyond a
relatively narrow range ofb values, and second, the actual
coverage may differ from the target even within this range.
The first problem has been handled by another resampling
technique developed (Gluhovsky et al., 2005) for the opti-
mal choice ofb based on the same single available record,
so that one first determines the optimal block size using this
technique, then runs subsampling with the optimalb to con-
struct the CI. To deal with the second problem, the so-called
calibrationwas suggested (Politis et al., 1999) and used ever
since: a CI with a desired confidence level is obtained by
running subsampling for the CI with the higher level. The
latter may be determined via MC simulations with an ap-
proximating model for the time series at hand. For example,
calibration was used inGluhovsky(2011) to achieve the de-
sired 0.90 target level for the subsampling CI for the skew-
ness constructed from the record in Fig.1.

In this study, another approach is explored for achieving
the target coverage of subsampling CIs in a practically im-
portant case of shorter records. As mentioned above, the
subsampling method requires the knowledge of the rate of
convergenceτn. In this paper, the asymptotic (known or un-
known) rate of convergence is replaced by that found via sim-
ulations with an approximating model. This eliminates the
need for calibration with even better overall results. For the
sake of consistency and comparisons with calibration, both
the time series and the approximating model are kept the
same as inGluhovsky(2011).
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Table 1.Parameters of the model time seriesXt (Eq.4) distribution
vs. sample characteristics of the observed seriesWt in Fig. 1.

Xt Xt ata = 0.145 Wt

Mean M = 0 0 −0.04

Variance V = 1+ 2a2
≈ 1.04 1.06

Skewness S =
6a+8a3

V 3/2 ≈ 0.84 0.83

Kurtosis K =
3+60a2

+60a4

V 2 ≈ 3.95 4.10

2 The approximating model

When records are long enough, subsampling does not require
that any model, linear or nonlinear, be fitted to the data, and it
works in complex dependent data situations under the weak-
est assumptions among other computer-intensive techniques.
The role of an approximating model that shares statistical
properties with the time series under study is twofold. It be-
comes necessary for the assessment of theactual coverage
of subsampling CIs via MC simulations, thus offering the
opportunity denied in practice by the single observed record.
From the model, one can generate numerous records, com-
pute from each one the subsampling CI, and estimate its cov-
erage probability by counting the fraction of times the known
parameter value,θ , was within the CI. The other important
role for an approximating model is to assist with the selec-
tion of the confidence level in calibration or instead with the
selection of theempirical rate of convergence in the tech-
nique suggested in this paper.

Consider the following model (Lenschow et al., 1994),

Xt = Yt + a(Y 2
t − 1), (4)

whereYt is a first-order autoregressive process (AR(1)),

Yt = φYt−1 + εt , (5)

0 < φ < 1 anda are constants, andεt is a white-noise pro-
cess (a sequence of uncorrelated random variables with mean
0 and varianceσ 2

ε ). AR(1) with a Gaussian white noise is
widely employed in studies of climate as a default model for
correlated time series. When the white noise in model (5) is
not Gaussian, the model may exhibit nonlinear behavior and
is referred to as animplicit nonlinear model (Fan and Yao,
2003), as opposed to anexplicit nonlinear model (4), where
AR(1) is altered with a nonlinear component.

In simulations,σ 2
ε = 1− φ2 so thatσ 2

Y = 1, the records
contain 2048 data points, andφ = 0.67, which permits to im-
itate the dependence structure of the vertical velocity time
series in Fig.1 as characterized by autocorrelation functions.
At a = 0.145, the mean, variance, skewness, and kurtosis of
Xt (in model4) are close to the corresponding sample char-
acteristics of the series (see Table1). Thus, model (4) might
provide a better description for that series than linear models,
which inherently have zero skewness.

4 A. Gluhovsky and T. Nielsen: Improving coverage of subsampling confidence intervals

vide a bridge between the Lorenz model and the original gov-
erning equations, whose fundamental properties they inherit,
thus presenting a viable alternative to standard time series
models when these are ill-suited for the atmospheric data.
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Fig. 1. Record of 20-Hz aircraft vertical velocity measurements
over Lake Michigan. Figure from Gluhovsky (2011).
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Fig. 2. Actual coverage probabilities of 90% subsampling CIs with
β=0.50 (black)) andβ=0.42 (red)) for the skewness of nonlinear
time series (4) ata=0.145 andn=2048. Horizontal green lines
denote 0.85 and 0.89 levels.

Table 1. Parameters of the model time seriesXt (Eq. (4)) distribu-
tion vs sample characteristics of the observed seriesWt in Fig.1.
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Fig. 2.Actual coverage probabilities of 90 % subsampling CIs with
β = 0.50 (black) andβ = 0.42 (red) for the skewness of nonlinear
time series (4) at a = 0.145 andn = 2048. Horizontal green lines
denote 0.85 and 0.89 levels.

3 Results of the simulation study

MC simulations with model (4) were carried out to explore
how the actual coverage of subsampling CIs is affected by
the introduction of theempirical convergence rateτn = nβ ,
i.e., the value of exponentβ now differs from the theoretical
one (in an attempt to make for an insufficient record length
and/or to avoid finding the theoretical value). Subsampling
CIs for the skewness were computed according to Eq. (1),
whereθ̂ was the sample skewness computed from the whole
record, while the quantiles were estimated from subsamples.
The latter requires decreasing the length of resulting CIs by
factor of(n/b)β (Politis et al., 1999).

The black curve in Fig.2 shows the actual coverage proba-
bility of subsampling CIs for the skewness of model time se-
ries (4) at a = 0.145, β = 0.50 for various block sizes. One
can see that because of the relatively short record, the CIs are
indeed useful only within a relatively narrow range of block
sizes, and even then the CIs undercover (the coverage is be-
low the target of 0.90). Estimating the skewness does require
long records, and a simple way to improve the coverage is to
increase the record length. When this is not feasible (which
is typically the case), we suggest employing an “empirical”
rate of convergence found via MC simulations with approxi-
mating model (4). The resulting red curve demonstrates that
coverage probabilities close to the target can be achieved us-
ing β = 0.42 within a range of block sizes (where the curve
is above, say, 0.89).

For the vertical velocity time series in Fig.1, the subsam-
pling 90 % CI for the skewness withβ = 0.42 is(0.56,1.10),
which compares favorably with the wider subsampling 90 %
CI, (0.41,1.24), obtained inGluhovsky(2011) using cali-
bration. Still both serve the purpose of confirming that the
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vertical velocity skewness is positive, thus indicating nonlin-
earity in the series.

4 Conclusions

A new technique, an extension of subsampling methodol-
ogy by introducing the empirical convergence rate, was sug-
gested in this paper for the practically important case of short
records, when subsampling CIs fail to achieve the target cov-
erage probability. Its effectiveness was demonstrated for a
model time series and then applied to the observed series of
the vertical velocity of wind.

The construction of a subsampling CI for an unknown time
series parameter requires the knowledge ofτn, the conver-
gence rate of its estimator. Although the latter can also be
estimated using the subsampling methodology (Bertail et al.,
1999), this causes additional sampling variability in the CIs,
and achieving the target coverage in case of short records
still remains problematic (see Eq.3). Finding the empirical
rate, however, removes the need for the rate estimation and
simultaneously improves the coverage.

As an alternative to calibration, which has been used so
far to improve the coverage of subsampling CIs, the new
technique has several advantages. Again, it does not require
determining the rate of convergence of the estimator (still
needed for calibrated CIs); it employs the same quantile
estimate (say,Q̂0.90, see Eq.1) as the basic subsampling,
whereas calibration requires higher quantiles, which are esti-
mated less accurately; finally, new CIs are shorter. For exam-
ple, the subsampling 90 % CI usingβ = 0.42 is(0.56,1.10)
for the skewness of vertical velocity time series in Fig.1,
which is smaller than the subsampling 90 % CI,(0.41,1.24),
obtained inGluhovsky(2011) via calibration withQ̂0.96. In
both papers, symmetric CIs were employed. Although almost
all published work on resampling CIs has focused on equal-
tailed intervals, symmetric CIs are often shorter and have bet-
ter coverage accuracy (Hall, 1988).

To achieve the target coverage, both calibration and the
new technique require an approximating model to determine
(via MC simulations) the empirical confidence level or em-
pirical rate, respectively (such as model4 for the vertical
velocity time series). In general, however, the problem of
selecting an approximating model is difficult, since linear
models are inappropriate whereas the multitude of nonlinear
models is overwhelming.

A new possibility may result from recent progress in
the work that extends statistical analysis to chaotic deter-
ministic dynamical systems, exemplified by the celebrated
Lorenz (1963) system (e.g.,Collet and Eckmann, 2006;
Araújo and Pacifico, 2010; Holland et al., 2012). One way
to deal with formidable difficulties posed by the (determin-
istic) governing equations of atmospheric dynamics is to ap-
proximate them with finite systems of ordinary differential
equations, the so-calledlow-order models(LOMs). LOMs

in the form of coupled classical mechanical systems known
as the Volterra gyrostats (gyrostatic LOMs) proved partic-
ularly useful, the simplest gyrostat being equivalent to the
Lorenz system (Gluhovsky, 2006). Gyrostatic LOMs provide
a bridge between the Lorenz model and the original gov-
erning equations, whose fundamental properties they inherit,
thus presenting a viable alternative to standard time series
models when these are ill-suited for the atmospheric data.

Acknowledgements.This work was supported by NSF Grant
AGS-1050588.

Edited by: W. Hsieh
Reviewed by: R. V. Donner and one anonymous referee

References
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